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A model for the theoretical description of one- and two-dimensional structure formation in bubble-liquid
mixtures is developed. It consists of a coupled system of partial differential equations describing the spatiotem-
poral evolution of the sound field amplitude and the redistribution of bubbles in a liquid. A linear stability
analysis of the~unstable! uniform bubble distribution is presented. Numerical simulations of the evolution of
the sound field amplitude and the bubble concentration show self-organization phenomena. The relation be-
tween this system and the nonlinear Schro¨dinger equation is discussed.@S1063-651X~96!00311-X#

PACS number~s!: 47.55.Bx, 43.25.1y, 43.35.1d

INTRODUCTION

Sound waves of high intensity propagating in a liquid
give rise to the phenomenon of acoustic cavitation@1–5#,
whereby the liquid ruptures and forms cavities or cavitation
bubbles. They group themselves in a remarkable way into a
branched structure of filaments on a scale much smaller than
the wavelength of the incident sound field. The filaments are
called ‘‘streamers’’ in this context and the whole pattern
‘‘acoustic Lichtenberg figures’’ because of the striking simi-
larity with the electrical discharge pattern obtained centuries
ago by Lichtenberg@6,7#. Figure 1 gives an example of a
bubble pattern as observed inside a cylindrical piezoelectric
transducer operated in water at about 14 kHz.

A theoretical description of this phenomenon does not
exist and a first step is presented here. The desired model has
to incorporate self-organization properties and may be de-
rived from the theory of wave propagation in liquids with
bubbles @8–25# or from the dynamics of bubble clouds
@27,28#. The most general and systematic approach to model
wave phenomena in bubble-liquid mixtures has been done
from the point of view of the mechanics of multiphase sys-
tems @12,13#. Here we are interested in the interaction of
acoustic waves and quasistationary bubble-liquid mixtures.

This problem can be addressed at different levels of com-
plexity. For instance, the sole action of the sound wave on
the motion of bubbles or other particles may be considered to
look into their slow motion under the influence of an acous-
tic field @13,17,18#. On the other hand, the sole action of the
bubbles on a sound field may be studied giving shock waves
and soliton alteration, self-focusing, self-transparency,
modulational instability, difference frequency generation,
etc. @19–26# ~see also@1–5#!.

In general, both the redistribution of the bubbles in the
acoustic field and the influence of this redistribution on the
acoustic wave have to be taken into account. This mutual
interaction has been considered previously by Kobelev and
Ostrovsky @29#. In their work, however, mainly the one-
dimensional self-concentration of the bubbles in the propa-
gation direction of the sound field has been investigated. For
streamer formation, additionally the three-dimensional char-

acter of the phenomenon has to be taken into account: two
dimensions in space and one dimension in time. This ap-
proach was presented in@30–32# for the two-dimensional
case starting from plane acoustic waves in a homogeneous
distribution of bubbles and investigating the stability of the
configuration in the one-dimensional front of the wave. In
that model the bubbles move to specific locations of the
acoustic wave due to~primary! Bjerknes forces. This motion,
however, changes the spatial distribution of bubbles in the
wave front, which by itself has a strong influence on the
sound field due to the dependence of the speed of sound on
the bubble concentration.

In this paper a generalization of this theory is presented,
taking into account the second dimension of the front and the
influence of added mass forces on the motion of bubbles. In
Sec. I the wave equation for bubble-liquid mixtures is de-
rived and discussed. In Sec. II we derive a partial differential
equation for the amplitude of the sound field that is essen-
tially a nonlinear Schro¨dinger equation where the potential is
replaced by the concentration of bubbles. The differential
equation for the bubble concentration is derived in Sec. III.
In Sec. IV boundary conditions and constants of motion are

FIG. 1. Photograph of a bubble pattern as observed inside a
cylindrical piezoelectric transducer of 7 cm inner diameter, driven
at 14 kHz.~Courtesy of A. Billo.!
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discussed. Section V contains a linear stability analysis for
perturbations of plane waves that provides a criterion for a
long-wavelength instability. The latter may be interpreted as
the reason for the pattern formation as observed in the nu-
merical simulations that will be presented in Sec. VI. The
numerical methods used for solving our system of partial
differential equations are briefly summarized in the Appen-
dixes.

I. WAVE EQUATION FOR BUBBLE-LIQUID MIXTURES

In this section we follow@12,13# to derive the wave equa-
tion for a liquid containing gas bubbles. Let us consider the
three-dimensional motion of an ideal weakly compressible
liquid with a low-volume content of spherical gas bubbles of
a given size. For simplicity thermal dissipation, capillary ef-
fects, and the coalescence and destruction of bubbles are
neglected. Leta l andag be the volume concentration,r l and
rg the density,pl andpg pressure values of the liquid and the
gas, respectively. Then the densityr and the pressurep of
the two-phase mixture are given by

r5a lr l1agrg , ~1!

p5a l pl1agpg , ~2!

wherea l1ag51. With rg!r l , ag!1, and the assumption
that all bubbles have the same radiusR, we obtain the fol-
lowing approximations for the density and the pressure of the
mixture:

r.r l~12ag!, ag5
4

3
pR3N, ~3!

p.pl , ~4!

whereN is the number of bubbles per unit volume of the
mixture. The low compressibility of the liquid will be de-
scribed by the linear~acoustic! approximation

r l5r l01cl
22~p2p0!. ~5!

The subscript zero denotes the unperturbed state of the mix-
ture andcl is the velocity of sound in the pure liquid. Here
and in the following we consider the polytropic equation for
the gas inside the bubbles

pg5p0SR0

R D 3k

, ~6!

wherek is the polytropic exponent (k5gg for adiabatic and
k51 for isothermal oscillations of the bubbles, wheregg
denotes the gas adiabatic exponent!. To analyze the com-
bined deformation of liquid and gas it is necessary to use the
Rayleigh equation for the radial motion of the liquid near the
bubbles

r lFRd2Rdt2 1
3

2 S dRdt D
2G5pg2p,

d

dt
5

]

]t
1~v•¹!. ~7!

In this equation the pressure of the liquidpl is replaced by
the pressure of the mixturep @see Eq.~4!#, d/dt is the sub-
stantial derivative,v equals the velocity of the mixture~liq-

uid and bubbles move with equal velocities, i.e., we consider
a single-velocity approximation! and the nabla operator is
given by¹5(]/]x,]/]y,]/]z). The equations for the num-
ber of bubbles, the mass of the mixture, and the equations of
motion for the mixture are given by

]N

]t
1div~Nv!50, ~8!

]r

]t
1div~rv!50, ~9!

r
dv

dt
1¹p50. ~10!

Equations~3! and ~5!–~10! completely describe the non-
linear nonstationary motion of the bubble-liquid mixture. To
consider acoustic waves in such a system we linearize the
system near the unperturbed state of the mixture and elimi-
nate all variables except for the pressure.

For this purpose we introduce small perturbationsp8,
r8, v8, N8, andR8 of the equilibrium valuesp0, r0, v050,
N0, and R0 such that p5p01p8, r5r01r8, v5v8,
N5N01N8, andR5R01R8. From ~3! and ~5! we obtain

r5@r l01cl
22~p2p0!#F12

4

3
pR3NG . ~11!

Linearization yields

r85a l0cl
22p82

4

3
pR0

3r l0N824pR0
2N0r l0R8, ~12!

where a l0512 4
3pR0

3N0 and r05r l0(12ag0)5r l0a l0.
From Eqs.~6! and ~7! we obtain

p5p0SR0

R D 3k

2r lFRd2Rdt2 1
3

2 S dRdt D
2G .

Linearization yields

p852
3kp0
R0

R82r l0R0

]2R8

]t2
. ~13!

The linearizations of Eqs.~8!, ~9!, and~10! are

]N8

]t
1N0div~v8!50, ~14!

]r8

]t
1r0div~v8!50, ~15!

r
dv8
dt

1¹p850. ~16!

Equations~14! and ~15! yield

N8

N0
5

r8

r0
~17!

and from~15! and ~6! one obtains
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]2r8

]t2
5Dp8. ~18!

Substitution of~17! in ~12! results in

r85a l0
2 cl

22p824pR0
2N0r0R8, ~19!

which together with~13! yields

S a l01
kp0

ag0r l0
a l0
2 cl

22D p8

5
kp0

ag0r l0
r82

R0
2

3ag0
S a l0

2 cl
22]

2p8

]t2
2

]2r8

]t2 D . ~20!

If we differentiate this equation two times with respect to
time and take into account Eq.~18!, then we obtain the wave
equation for a liquid containing gas bubbles in the form

]2p8

]t2
2c0

2Dp81
c0
2

v r
2c`

2

]2

]t2 S ]2p8

]t2
2c`

2Dp8D50, ~21!

where

c0
225c`

221
r l0ag0

kp0
, c`.cl ,

ag05
4

3
pR0

3N, v r
25

3kp0
r l0R0

2 . ~22!

Herev r is the resonance frequency of the bubbles. In Eqs.
~21! and ~22! a l0 is replaced by 1 becauseag0!1. The
detailed analysis of Eq.~21! is given in @13,14#.

It is easy to see that without gas bubbles (ag050,
R050) this equation reduces to the classical linear wave
equation of acoustics. According to Eq.~21! the low-
frequency waves (v!v r) propagate with velocities that are
close toc0 and high-frequency waves possess a speed that
converges toc` .

Taking into account that during the first stage of the cavi-
tation process the bubbles are very small~microbubbles! and
omitting dispersive effects we may use the low-frequency
limit of the wave equation~21! in the form

]2p8

]t2
2c0

2Dp850, ~23!

where the influence of the microbubble concentration is in-
cluded in the velocity of soundc0 @see Eq.~22!#, which can
be rewritten in the form

c0
225cl

22~11«n!, ~24!

«5
cl
2r l0
kp0

4

3
pR0

3N* , n5
N

N*
. ~25!

HereN* is some characteristic concentration of bubbles and
n is the dimensionless concentration of bubbles. Here and in
the following we will assume thatn varies slowly in time
and space.

II. EVOLUTION OF THE SOUND FIELD AMPLITUDE

For describing the evolution of the pressure amplitude
p8 (p85p2p0) of the sound field we start with the three-
dimensional wave equation

c0
22 ]2p8

]t2
5

]2p8

]x2
1

]2p8

]y2
1

]2p8

]z2
, ~26!

wherec0, the speed of sound in the mixture, is given by Eq.
~24!. The parameter« is small and of the order of 1022. If
we assume the following values for the physical parameters:
cl;103 m/s, r l0;103 kg/m3, k;1, p0;105 N m22,
R0;1025 m, andN*;109 m23, we obtain, for example,
«50.04.

Let us consider the stability of plane acoustic waves that
propagate along thez axis. In the case«50 the exact solu-
tion of Eq. ~26! for the wave propagation process may be
written as

p85
1

2 HW0expF ivS t2 z

cl
D G1c.c.J , ~27!

whereW0 is the constant complex wave amplitude and c.c.
denotes the complex conjugate. For the stability analysis we
consider perturbations ofW0 in the front of the plane wave.
Therefore we approximate the solution of Eq.~26! in the
form

p85
1

2 HW~T,X,Y!expF ivS t2 z

cl
D G1c.c.J , ~28!

whereT5«t, X5A«x, andY5A«y are slow variables. Sub-
stituting the derivatives

]2p8

]x2
5

«

2 H ]2W

]X2 expF ivS t2 z

cl
D G1c.c.J , ~29!

]2p8

]y2
5

«

2 H ]2W

]Y2 expF ivS t2 z

cl
D G1c.c.J ,

~30!

]2p8

]z2
52S v

cl
D 2 12 HWexpF ivS t2 z

cl
D G1c.c.J ,

~31!

]2p8

]t2
5
1

2 H S «2
]2W

]T2
12iv«

]W

]T
2v2WD

3expF ivS t2 z

cl
D G1c.c.J ~32!

in Eq. ~26! and neglecting the terms proportional to«2

yields, with Eq.~24!,

2iv

cl
2

]W

]T
5

]2W

]X2 1
]2W

]Y2 1S v

cl
D 2nW. ~33!

If we use the dimensionless variablesj, h, z, andw,

j5
1

2
vT5

1

2
v«t, h5

v

cl
X5

v

cl
A«x,
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z5
v

cl
Y5

v

cl
A«y, w5

W

W*
, ~34!

we obtain the amplitude equation in the form

i
]w

]j
5

]2w

]h2 1
]2w

]z2
1nw. ~35!

Equation~35! is a nonlinear Schro¨dinger equation with the
potential being replaced by the concentration of bubblesn.

III. EVOLUTION OF THE BUBBLE CONCENTRATION
IN THE SOUND FIELD

All bubbles with volumeVg experience a force

F52Vg¹p, ~36!

where¹p is the pressure gradient. Ifp andVg vary in time
with high frequency it is possible to calculate the time aver-
age of the force. This primary Bjerknes force@33,34# can be
written as

FB52^Vg~ t !¹p~x,y,z,t !&, ~37!

where the angular brackets denote the time average~over one
period 2p/v of the oscillation ofp). In our case, the pres-
sure field may be described by

p5p01
1

2 H ~WR1 iWI !expF ivS t2 z

cl
D G

1~WR2 iWI !expF2 ivS t2 z

cl
D G J

5p01WRcosFvS t2 z

cl
D G2WIsinFvS t2 z

cl
D G , ~38!

where

W~j,h,z!5WR~j,h,z!1 iWI~j,h,z!. ~39!

Now we shall consider a bubble located at the point
(x,y,z) in the acoustic field and oscillating far below its
resonance frequencyv r . For small deviationsR85R2R0 of
the radius of the bubbleR from its value at equilibriumR0
we obtain the equation of motion

R̈81v r
2R852

1

r l0R0
HWR~j,h,z!cosFvS t2 z

cl
D G

2WI~j,h,z!sinFvS t2 z

cl
D G J . ~40!

The solution of this equation is

R852
1

r l0R0~v r
22v2!

HWR~j,h,z!cosFvS t2 z

cl
D G

2WI~j,h,z!sinFvS t2 z

cl
D G J ~41!

becauseWR andWI are functions that change slowly in time
and space. Then the oscillations of the bubble volume are
given by

Vg~ t !5
4

3
pR3~ t !5

4

3
pR0

3F11
R8~ t !

R0
G3

'Vg0S 11
3

R0
R8~ t ! D

5Vg0X12
3

r l0R0
2~v r

22v2!

3HWR~j,h,z!cosFvS t2 z

cl
D G

2WI~j,h,z!sinFvS t2 z

cl
D G J C. ~42!

The pressure gradient¹p5(]p/]x,]p/]y,]p/]z) is given
by

]p

]x
5

v

cl
A«H ]WR

]h
cosFvS t2 z

cl
D G2

]WI

]h
sinFvS t2 z

cl
D G J ,

]p

]y
5

v

cl
A«H ]WR

]z
cosFvS t2 z

cl
D G2

]WI

]z
sinFvS t2 z

cl
D G J ,

~43!

]p

]z
5

v

cl
HWRsinFvS t2 z

cl
D G1WIcosFvS t2 z

cl
D G J .

If we insert Eqs.~42! and~43! into Eq.~37! and average over
one period 2p/v, we obtain the primary Bjerknes force

FB5S g1

]~ uWu2!
]h

,g1

]~ uWu2!
]z

,0D ,
g15

3Vg0

4r l0R0
2~v r

22v2!

v

cl
A«. ~44!

The interaction forces between the liquid and the bubbles
include also the Stokes~friction! force FS and the added
mass forceFM . Taking into account that the temporally av-
eraged motion of the bubbles is slow and that the shape of
the bubbles is spherical, the simplest formulas for the forces
FS andFM are

FS526pm lR0U, ~45!

FM52
1

2
r l0Vg0

]U

]t
, ~46!
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whereU5(Ux ,Uy,0) is the velocity vector describing the
slow displacement of the bubbles andm l is the viscosity of
the liquid. Then the equation for slow drift of bubbles in the
liquid is

FB1FS1FM50. ~47!

From this equation one can derive an equation for the evo-
lution of the velocity of the bubbles in the form

T2
]U

]t
1U5G“hzuWu2, ~48!

with

T25
r l0Vg0

12pm lR0
, G5

g1

6pm lR0
, ~49!

where“hz5(]/]h,]/]z,0) andT2 is a characteristic time
for the relaxation of the velocity of the bubbles. If we use the
dimensionless variablesh,z,w @see Eq.~34!#, and

u5
U

U*
, U*5

cl
2
A«, g5

GW
*
2

U*
, t25

1

2
vT2«,

~50!

we obtain a relaxational equation for velocity in the form

t2
]u

]j
1u52g¹hz~ uwu2!. ~51!

Using the dimensionless variables of Eqs.~34!, ~25!, and
~50! it is possible to rewrite the conservation law for the
bubble concentration during the slow redistribution of
bubbles in space,

]N

]t
1div~NU!50, ~52!

in the form

]n

]j
1

]~nux!

]h
1

]~nuy!

]z
50, ~53!

with u5(ux ,uy,0).
It is well known that microbubbles cannot exist for a long

time without an acoustic field~see@35#!. Applying theoreti-
cal results@36#, one can show that air bubbles in water with
a size of a few micrometers will dissolve in a few seconds.
Let us assume that the volume of the bubbles decreases ex-
ponentially in time. Since we consider only bubbles of fixed
size this effect is taken into account by an exponentially
decreasing number of bubbles that is given by the differential
equation

]N

]t
52

N

T1
, ~54!

where T1 is the characteristic time of dissolution of mi-
crobubbles.

When an acoustic field of sufficiently high amplitude is
switched on, it may stop the dissolution and support the for-
mation of microbubbles. It is easy to estimate@13# that for

small amplitudes of the acoustic field the energy flow into
the bubble for one period of oscillations is directly propor-
tional to the square of the pressure amplitude of the external
field. Therefore, the concentration of generated bubbles
should be directly proportional to the energy of the acoustic
field uWu2. When increasing the amplitude of the acoustic
field the concentration of generated bubbles converges to
some saturation valueN` , which describes the limited
amount of gas diluted in the liquid. This fact can be phenom-
enologically taken into account by including an additional
term

F~ uWu2!5N`F12expS 2
duWu2

N`
D G ~55!

in Eq. ~54! to describe the generation of bubbles by the
acoustic field where the parameterd controls the generation
of bubbles. Then Eq.~54! can be written as

]N

]t
52

N2F~ uWu2!
T1

. ~56!

It should be emphasized that for the derivation of Eq.~56!
effects connected with threshold phenomena have been omit-
ted ~e.g., the quasistatic Blake threshold pressure@37#!, be-
cause the main aim of the present paper is to investigate the
self-organizing behavior of bubble fields above the cavitation
threshold.

Adding the concentration growth and decay term of Eq.
~56! to Eq. ~52! yields the desired partial differential equa-
tion for the evolution of the bubble concentration in a sound
field. Choosing as normalizing constantN*5duW* u2, the
dimensionless form of this equation may be written as

]n

]j
1

]~nux!

]h
1

]~nuy!

]z
52

n2 f ~ uwu2!
t1

, ~57!

f ~ uwu2!5A`
2 @12exp~2uwu2/A`

2 !#,

where

t15
v«

2
T1 ~58!

and

A`
25

N`

N*
. ~59!

The parametert1 is difficult to estimate exactly. In any case,
however,T1 has to be much larger than the period 2p/v of
the acoustic oscillation. Finally, we want to note that for
t150 andA`→` Eq. ~57! implies n5uwu2 and therefore
Eq. ~35! becomes the ordinary nonlinear Schro¨dinger equa-
tion

i
]w

]j
5

]2w

]h2 1uwu2w. ~60!
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IV. BOUNDARY CONDITIONS
AND CONSTANTS OF MOTION

The boundary conditions for the amplitudew,

]w

]h
~0,z,j!5

]w

]h
~Lx ,z,j!50 ~61!

and

]w

]z
~h,0,j!5

]w

]z
~h,Ly ,j!50, ~62!

describe the reflection from the lateral walls of the channel
whereLx andLy are the dimensionless distances between the
walls. It is easy to show that the energy of the sound field

E~j!5E
0

LxE
0

Ly
uw~h,z,j!u2dhdz ~63!

is a constant of motion that depends only on the initial dis-
tribution of the amplitudew5w(h,z,0). For A`→` the
temporal evolution of the total number of bubbles

M ~j!5E
0

LxE
0

Ly
n~h,z,j!dhdz ~64!

can be described by the ordinary differential equation

]M

]j
5
E2M

t1
. ~65!

This equation is obtained by integrating Eq.~57! in space,
taking into account the boundary conditions for the velocity
components

ux~0,j!505ux~Lx ,j!, uy~0,j!505uy~Ly ,j!. ~66!

When the initial distribution of bubblesn(h,0) is chosen to
be equal to the initial energy density of the acoustic field
uw(h,z,0)u2, thenM (0)5E(0)5E0 and the total number of
bubblesM has to be constant in timeM (j)5E0. This fact
has been used for controlling the accuracy of the numerical
method. For all results presented in this paper the deviation
of E andM from their initial values was smaller than 1%. If
M (0) is different fromE0 then M (j) converges to this
stable equilibrium value, as can be seen directly from Eq.
~65!.

V. STABILITY ANALYSIS

In this section the stability of uniform solutions of Eqs.
~35!, ~51!, and ~57! with respect to small perturbations is
analyzed, where Eq.~51! is rewritten as

t2
]ux
]j

52ux1g
]

]h
~ uwu2!, ~67!

t2
]uy
]j

52uy1g
]

]z
~ uwu2!. ~68!

If we write the complex amplitudew in the form

w5Aexp~ iQ!, ~69!

whereA5A(j,h,z) and Q5Q(j,h,z) are real functions,
we obtain

2A
]Q

]j
5

]2A

]h2 1
]2A

]z2
2AF S ]Q

]h D 21S ]Q

]z D 2G1An, ~70!

]A

]j
52S ]A

]h

]Q

]h
1

]A

]z

]Q

]z D1AS ]2Q

]h2 1
]2Q

]z2 D , ~71!

]n

]j
52

]~nux!

]h
2

]~nuy!

]z
2
n2 f ~A2!

t1
, ~72!

t2
]ux
]j

52ux1g
]A2

]h
, ~73!

t2
]uy
]j

52uy1g
]A2

]z
. ~74!

It is easy to verify that

A5A05const, n5 f ~A0
2!, Q52 f ~A0

2!j,

ux50, uy50 ~75!

is a uniform solution of this system. The evolution of a small
perturbation of this uniform solution

A5A01Ã, Q52 f ~A0
2!j1Q̃, n5 f ~A0

2!1ñ,

ux5ũx ,uy5ũy ~76!

is given by the linearized equations

05A0

]Q̃

]j
1

]2Ã

]h2 1
]2Ã

]z2
1A0ñ, ~77!

05
]Ã

]j
2A0S ]2Q̃

]h2 1
]2Q̃

]z2
D , ~78!

05
]ñ

]j
1 f ~A0

2!S ]ũx
]h

1
]ũy
]z D1

1

t1
@ ñ22A0f 8~A0

2!Ã#, ~79!

05t2
]ũx
]j

1ũx22gA0

]Ã

]h
, ~80!

05t2
]ũy
]j

1ũy22gA0

]Ã

]z
. ~81!

Now let us consider the evolution of a periodic perturba-
tion that can be written as

S Ã

Q̃

ñ

ũx

ũy

D 5S Â1

Q̂1

n̂1

ûx

ûy

D exp~sj1 iK xh1 iK yz!. ~82!
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The stability of the uniform solution depends on the sign of
the real part of the growth rate coefficients. In order to
computes we substitute the perturbation Eq.~82! into the
linearized Eqs.~77!–~81! and thus obtain the polynomial in
s,

f ~s!5a4s
41a3s

31a2s
21a1s1a0 , ~83!

with

a05uK u422A0
2uK u2@ f 8~A0

2!1t1g f ~A0
2!uK u2#, ~84!

a15~t11t2!uK u422t2A0
2f 8~A0

2!uK u2, ~85!

a2511t1t2uK u4, ~86!

a35t11t2 , ~87!

a45t1t2 , uK u25Kx
21Ky

2 . ~88!

According to the Hurwitz criterion all rootss of this poly-
nomial possess negative real parts if and only if the follow-
ing quantities are positive:

D05a0 , ~89!

D15a1 , ~90!

D25a1a22a0a3 , ~91!

D35a3D22a1
2a4 , ~92!

D45a4D3 . ~93!

The analysis of this set of stability conditions gives us two
types of instabilities.

~i! The inequalityD0.0 implies that for

A0
2.A

*
2 , A

*
2 f ~A*

2!5
1

2t1g
, ~94!

perturbations with arbitrary wave length are unstable. For
perturbations withA0,A* the following stability criterion
holds:

uK u2.K
*
2 5

2A0
2f 8~A0

2!

122t1gA0
2f ~A0

2!
. ~95!

The inequalityD1.0 yields another stability condition

uK u2.K
**
2 5

2A0
2f 8~A0

2!

11t1 /t2
. ~96!

SinceK*.K** one obtains the long-wavelength instability
criterion

uK u,K* . ~97!

This long-wavelength instability is more complicated that in
the case of the~ordinary! nonlinear Schro¨dinger equation. In
Fig. 2 the squares of the threshold valuesK

*
2 andK

**
2 are

plotted versus the square of the amplitudeA0
2 .

~ii ! It is easy to see that, sincea4.0 anda3.0, the set of
conditionsD2.0, D3.0, andD4.0 is equivalent to the
condition for stability

D2.
a1
2a4
a3

, ~98!

which may be represented in the form

g~ uK u2!5b02b1uK u21b2uK u4.0, ~99!

with

b05~t11t2! f 8~A0
2!, ~100!

b152t2
3A0

2f 8
2
~A0

2!2g~t11t2!
2f ~A0

2!, ~101!

b25t2
2~t11t2! f 8

2
~A0

2!. ~102!

For the caseb1,0 perturbations with arbitrary wave number
uK z are stable. Thus the instability of the second type occurs
only for b1.0. ForA`→` @see Eq.~57!# this leads to the
following stability criterion for waves with arbitrary wave-
length

A0
2,A

**
2 5

2t2~t11t2!

2t2
32g~t11t2!

2 . ~103!

For A0.A** inequality ~99! gives the instability condition

K2,uK u,K1 , ~104!

whereK2 andK1 are the roots of equationg(uK u2)50. The
asymptotic formulas forK1 andK2 for A0→` are

K1
2→

2t2
32g~t11t2!

2

t2
2~t11t2!

A0
2 , K2

2→0. ~105!

FIG. 2. Diagram for the instability of the first type for
t150.1, t250.02,g50.01, andA`→`. The solid line shows the
critical perturbation wave numberK* @Eq. ~95!# and the shaded
area gives the region of stability. The upper and the lower dashed
lines give the stability threshold for the nonlinear Schro¨dinger equa-
tion ~60! and the other critical perturbation wave numberK** @Eq.
~96!#, respectively. The threshold amplitude value equalA* @Eq.
~94!# is shown by the vertical dotted line.
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These results of the stability analysis are illustrated by the
stability diagram of theuK u2–A0

2 plane shown in Fig. 3. The
long-wavelength instability may be interpreted as the reason
for the occurrence of nonlinear structures, which will be dis-
cussed in the next section.

VI. RESULTS OF NUMERICAL SIMULATIONS

In this section we present results of numerical simulations
using Eqs.~57!, ~51!, and~35! for the evolution of the bubble
concentration, velocity of bubbles, and the amplitude of the
sound field, respectively. We have simulated the evolution of
small perturbations of acoustic waves propagating along a
channel with reflecting boundaries.

Our model contains four significant dimensionless param-
eterst1, t2, g, andA` . The parametert1 is the time of
dissolution of microbubbles,t2 is the relaxation time of the
velocity of the bubbles,g is the characteristic parameter of
the primary Bjerknes force, andA` is a characteristic ampli-
tude for the saturation of the generation of bubbles by the
sound field.

Let us start from the one-dimensional~1D! case
(]/]z50). The numerical algorithm used for solving our
system of partial differential equations is presented in Ap-
pendix A. The initial condition consists of a uniform distri-
bution of the amplitude of the acoustic field and the concen-
tration of bubbles that is perturbed by a cosine function with
small amplitude. For simplicity we investigate only pertur-
bations with a wavelength equal to the distance between the
lateral walls of the channel, which is given by

w~0,h!5w0F11
w1

2
@12cos~h!#G ,

n~0,h!5uw~0,h!u2, ux~0,h!50, ~106!

with w051 andw150.1 ~i.e., the caseKx51, hP@0,2p#).
The spatial grid consisted of 257 points and the size of the
time steps wasDj50.1(Dh)2 with Dh52p/256. In the fol-
lowing figures the spatial interval has been normalized by
2p to @0,1#.

The systematic investigation of the influence oft1 and
g on the evolution of structures in the 1D case fort250
~i.e., without added mass forces!, A`→`, and g,0 was
carried out in@30#. Here we consider the influence of the
parameterst2 and g.0 on the structure formation for
A`→`.

The evolution of small perturbations of the acoustic field
given by Eqs.~106! for t150.1, t250.02, andg50.01 is
presented in Fig. 4. The development of long-wavelength
instability of the first type leads to the structure formation
shown.~For this set of parameters the instability of the sec-
ond type does not occur.! It is visible that the sound field
amplitudeuwu does not exceed the instability threshold value
A
*
2 given in Eq.~94!. Therefore, this structure looks stable.

The comparison of the shape of this structure with the clas-
sical soliton solution of the nonlinear Schro¨dinger equation
is shown in Fig. 4~d!.

These results agree qualitatively with the results of Ref.
@30#. However, after a long time (t.3700) the position of
this structure becomes unstable and the structure jumps to
the wall of the channel, as shown in Fig. 5 for the bubble
concentrationn.

The influence ofg on the shape of this quasistable struc-
ture is shown in Fig. 6~a!. For g→0 the shape of the qua-
sistable structure converges to the stationary solution of the
nonlinear Schro¨dinger equation. For increasingg the pri-
mary Bjerknes force becomes stronger and therefore the
width of the structure decreases. Furthermore, the amplitude
of the structure increases and for sufficiently largeg exceeds
the instability threshold Eq.~94!.

The dependence of the transient oscillations of the maxi-
mum of the sound field amplitudeuwu is shown in Fig. 6~b!.
For t1→0 the behavior of the solution is quite similar to the
periodic oscillations of the nonlinear Schro¨dinger equation
@30#. If t1 is increased the oscillations are more strongly
damped and the amplitude of the quasistable structure be-
comes larger.

Now let us consider the 2D case. The numerical algorithm
used is given in Appendix B. The initial condition consists of
a uniform distribution of the amplitude of the acoustic field
and the concentration of bubbles that is perturbed by a cosine
function with small amplitude for both directions (h and
z). For simplicity we consider a channel with a quadratic
cross section and investigate only perturbations with a wave-
length equal to the distance between the lateral walls of the
channel given by

w~0,h,z!5w0F11
w1

4
@12cos~h!#@12cos~z!#G , ~107!

n~0,h,z!5uw~0,h,z!u2,

ux~0,h,z!50, uy~0,h,z!50,

with w051 and w150.1 ~i.e., the caseKx51, Ky51,
hP@0,2p#, and zP@0,2p#). The spatial grid consisted of
257 points in each direction and the size of the time steps
wasDj50.1(Dh)2 with Dh5Dz52p/256.

For the nonlinear Schro¨dinger equation in the 2D case a
‘‘blowup’’ phenomenon takes place and the formation of a
solitonlike structure is impossible. The same blowup may

FIG. 3. Diagram for the instability of the second type for
t150.1, t251, g50.02, andA`→`. The shaded area shows the
region of instability and the dashed line gives the asymtotic behav-
ior for K1

2 @see Eq.~105!#.

54 4997TOWARDS A THEORY OF SELF-ORGANIZATION . . .



occur in our model as illustrated in Fig. 7~a!, where the
maximumuwumax of the sound field amplitude is plotted ver-
sus time. The blowup phenomenon may be stopped by the
saturation of the bubble generation due to the limited amount
of diluted gas. Such a saturation was modeled in Eq.~57!
using a dimensionless saturation amplitudeA` . For A`52
the blowup is stopped and we obtain, for small Bjerknes
forces (g50.001), the evolution shown in Fig. 7~b!. During
the transient (0,t,120) a quasistable structure is generated
in the center of the square. This can also be seen in Figs.
8~a!-8~c! where the corresponding pattern formation is
shown. However, like in the 1D case~see Fig. 5! the position
of this structure is not stable and therefore it starts, at
t'130, to move to the boundary~see Fig. 8!. Because of this
collision the amplitudeuwumax grows, as shown in Fig. 7~b!.
For larger Bjerknes forces (g.0.001) the saturation level
A` is not small enough to stop the blowup phenomenon.

VII. DISCUSSION

A model for the theoretical description of a possible
mechanism of pattern formation in acoustic cavitation is de-
veloped. It consists of an equation for the evolution of the
bubble concentration in an acoustic field@Eq. ~57!#, an equa-
tion for the motion of bubbles in the acoustic field@Eq. ~51!#,
and a nonlinear Schro¨dinger equation for the amplitude of
the acoustic field@Eq. ~35!#, where the potential is replaced
by the distribution of bubbles. Linear stability analysis of
uniform configurations of bubbles shows a long-wavelength
instability. The latter is quite similar to the long-wavelength
instability for the nonlinear Schro¨dinger equation and may
be interpreted as the reason for nonlinear structure formation.

Numerical simulations for the 1D and the 2D case show a
‘‘self-concentration’’ of bubbles in the sound field yielding
localized ~quasistable! solitonlike structures. These struc-

FIG. 4. Transient to the quasistable solitonlike structure in the one-dimensional case fort150.1, t250.02,g50.01, andA`→`. ~a!
Evolution of the bubble concentrationn. ~b! Evolution of the amplitude of the sound fielduwu. ~c! Evolution of the velocity of the bubbles
ux . ~d! Comparison of the shape of the quasistable structure with the shape of a soliton solution of the nonlinear Schro¨dinger equation
~dotted line!.
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tures may be interpreted as a first step towards the formation
of streamers.

Future development of this approach should take into ac-

count secondary Bjerknes forces, rectified diffusion, coales-
cence and destruction of bubbles of different sizes, the pres-
ence of vapor in the bubbles, the nonlinear character of
bubble oscillations, and the whole spatial pattern. Further-
more, in order to compare the theoretical approach with the
experimental results~see Fig. 1 and@7#! it is necessary to
consider the case of standing waves.
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APPENDIX A: NUMERICAL METHOD
FOR THE 1D CASE

In this appendix we discuss the numerical scheme for
solving the system of partial differential equations

i
]w

]t
5

]2w

]x2
1nw, ~A1!

]n

]t
1

]~nu!

]x
52

n2 f ~ uwu2!
t1

, ~A2!

t2
]u

]t
1u52g

]

]x
~ uwu2!, ~A3!

FIG. 6. ~a! Dependence of the shape of the one-dimensional
quasistable solitonlike structure ong for t150.1, t250.02, and
A`→`. ~b! Evolution of the maxima of the amplitude of the acous-
tic field during the transient to the one-dimensional quasistable
structure forg50.01, t250.02, A`→`, and different values of
t1.

FIG. 7. Evolution of the maxima of the amplitude of the acous-
tic field for the two-dimensional case.~a! Blowup phenomenon for
t150.1,t250.02,g50.01, andA`→` ~solid line! and a compari-
son with the solution of the nonlinear Schro¨dinger equation~dashed
line!. ~b! Evolution of the maxima of the amplitude of the acoustic
field during the transient to the quasistable structure fort150.1,
t250.02,g50.001, andA`52 with a jump due to the positional
instability.

FIG. 5. Positional instability of the solitonlike structure in the
one-dimensional case fort150.1, t250.02, g50.01, and
A`→`.
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for 0,x,L and t.0. ~Here we use the standard variables
x and t for space and time and the velocity componentux is
replaced byu to obtain formulas that are more readable.! For
solving the amplitude equation~A1! a Crank-Nicholson
scheme for the linear Schro¨dinger equation@38,39# was
modified for the nonlinear case

i
wj
n112wj

n

Dt
5

1

2~Dx!2
@wj21

n1122wj
n111wj11

n111wj21
n 22wj

n

1wj11
n #1

1

2
~nj

nwj
n1nj

n11wj
n11!, ~A4!

FIG. 8. Structure formation and the development of the positional instability fort150.1, t250.02,g50.001, andA`52.
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where wj
n5w(xj ,tn), nj

n5n(xj ,tn), xj5( j21)Dx, and
tn5nDt with j51, . . . ,J andn50,1,2,. . . . Fornumerical
computations it is necessary to rewrite this system of linear
equations in tridiagonal form

wj21
n111Bj

nwj
n111wj11

n115Rj
n , ~A5!

with

Bj
n5222a11a2nj

n11 , ~A6!

Rj
n52wj11

n 2wj21
n 1~22a12a2nj

n!wj
n, ~A7!

where

a15
2~Dx!2i

Dt
, a25~Dx!2, ~A8!

and j52, . . . ,J21. The boundary condition Eq.~61! can be
approximated byw1

n115w2
n11 andwJ

n115wJ21
n11 . For solv-

ing Eq. ~A1! for the bubble concentrationn we used the
discretization scheme

nj
n112nj

n21

2Dt
1
nj11
n uj11

n 2nj21
n uj21

n

2Dx
1
nj
n111nj

n21

2t1

2
f ~ uwj

nu2!
t1

50 ~A9!

for j52, . . . ,J21. This can be rewritten as an explicit
scheme that may be considered as a modified ‘‘staggered
leapfrog’’ method@39#:

nj
n115b1nj

n212b2~nj11
n uj11

n 2nj21
n uj21

n !1b3f ~ uwj
nu2!,
~A10!

with

b15
t12Dt

t11Dt
, b25

t1Dt

~t11Dt !Dx
, b35

2Dt

t11Dt
.

~A11!

At the bondaries we use mirror reflection boundary condi-
tions

u052u2 , n05n2 , uJ1152uJ21 , nJ115nJ21,
~A12!

which yield equations for the boundary values

n1
n115b1n1

n2122b2n2
nu2

n1b3f ~ uw1
nu2!, ~A13!

nJ
n115b1nJ

n2112b2nJ21
n uJ21

n 1b3f ~ uwJ
nu2!. ~A14!

The integration scheme for the velocityu is also a modified
staggered leapfrog method@39# and is given by the discreti-
zation

t2
uj
n112uj

n21

2Dt
1
1

2
~uj

n111uj
n21!

1
g

2Dx
~ uwj11

n u22uwj21
n u2!50 ~A15!

or explicitly formulated,

uj
n115c1uj

n212c2~ uwj11
n u22uwj21

n u2!, ~A16!

with

c15
t22Dt

t21Dt
, c25

gDt

~t21Dt !Dx
, ~A17!

and j52, . . . ,J21. The boundary conditions are

u1
n11505uJ

n11 . ~A18!

They are obtained by substituting in Eq.~A3! the boundary
conditions~61! for w and the initial conditionu(x,0)50.

APPENDIX B: NUMERICAL METHOD
FOR THE 2D CASE

In this appendix we discuss the numerical scheme for
solving the system of partial differential equations

i
]w

]t
5

]2w

]x2
1

]2w

]y2
1nw, ~B1!

]n

]t
1

]~nu!

]x
1

]~nv !

]y
52

n2 f ~ uwu2!
t1

, ~B2!

t2
]u

]t
1u52g

]

]x
~ uwu2!, ~B3!

t2
]v
]t

1v52g
]

]y
~ uwu2! ~B4!

for 0,x,L, 0,y,L, andt.0. ~Here we use the standard
variablesx, y, and t for space and time and the velocity
componentsux and uy are replaced byu and v.! For the
approximation of Eq.~B1! between the time levelsn and
n11 we use the approximation ofn,

ñ j ,k
n 5

nj ,k
n 1nj ,k

n11

2
. ~B5!

The equation forw is solved using an alternating-direction
implicit method@39#. The first substep is given by

i
wj ,k
n11/22wj ,k

n

Dt/2
5
wj21,k
n11/222wj ,k

n11/21wj11,k
n11/2

D2

1
wj ,k21
n 22wj ,k

n 1wj ,k11
n

D2

1
nj ,k
n 1nj ,k

n11

2

wj ,k
n 1wj ,k

n11/2

2
~B6!

for j52, . . . ,J21, where wj ,k
n 5w(xj ,yk ,tn),

nj ,k
n 5n(xj ,yk ,tn), xj5( j21)D, yk5(k21)D, and
tn5nDt with j51, . . . ,J, k51, . . . ,K, J5K, and
n50,1,2,. . . . In tridiagonal form this equation reads

wj21,k
n11/21Bj ,k

n wj ,k
n11/21wj11,k

n11/25Rj ,k
n , ~B7!
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with

Bj ,k
n 5222a11a2~nj ,k

n 1nj ,k
n11!, ~B8!

Rj ,k
n 52wj ,k21

n 2wj ,k11
n 1@22a12a2~nj ,k

n 1nj ,k
n11!#wj ,k

n ,
~B9!

where

a15
2D2i

Dt
, a25

D2

4
~B10!

and j52, . . . ,J21. The second substep is given by

i
wj ,k
n112wj ,k

n11/2

Dt/2
5
wj21,k
n11/222wj ,k

n11/21wj11,k
n11/2

D2

1
wj ,k21
n11 22wj ,k

n111wj ,k11
n11

D2

1
nj ,k
n 1nj ,k

n11

2

wj ,k
n11/21wj ,k

n11

2
~B11!

for k52, . . . ,K21. In tridiagonal form this equation reads

wj ,k21
n11 1Bj ,k

n11/2wj ,k
n111wj ,k11

n11 5Rj ,k
n11/2, ~B12!

with

Bj ,k
n11/25222a11a2~nj ,k

n 1nj ,k
n11!, ~B13!

Rj ,k
n11/252wj21,k

n11/22wj11,k
n11/2

1@22a12a2~nj ,k
n 1nj ,k

n11!#wj ,k
n11/2, ~B14!

andk52, . . . ,K21.
The discretization scheme for Eq.~B2! describing the

evolution of the bubble concentrationn is given by

nj ,k
n112nj ,k

n21

2Dt
1
nj11,k
n uj11,k

n 2nj21,k
n uj21,k

n

2Dx

1
nj ,k11
n v j ,k11

n 2nj ,k21
n v j ,k21

n

2Dy
1

1

2t1
~nj ,k

n111nj ,k
n21!

2
1

t1
f ~ uwj ,k

n u2!50 ~B15!

and the values ofnj ,k
n11 may be calculated explicitly as

nj ,k
n115b1nj ,k

n212b2~nj11,k
n uj11,k

n 2nj21,k
n uj21,k

n

1nj ,k11
n v j ,k11

n 2nj ,k21
n v j ,k21

n !

1b3f ~ uwj ,k
n u2! ~ j52, . . . ,J21;k52, . . . ,K21!,

~B16!

with

b15
t12Dt

t11Dt
, b25

t1Dt

~t11Dt !D
, b35

2Dt

t11Dt
,

~B17!

and j52, . . . ,J21, k52, . . . ,K21. For n we use mirror
reflection boundary conditions. Thus we obtain, for
k52, . . . ,K21,

n1,k
n115b1n1,k

n212b2~2n2,k
n u2,k

n 1n1,k11
n v1,k11

n 2n1,k21
n v1,k21

n !

1b3f ~ uw1,k
n u2!, ~B18!

nJ,k
n115b1nJ,k

n212b2~22nJ21,k
n uJ21,k

n 1nJ,k11
n vJ,k11

n

2nJ,k21
n vJ,k21

n !1b3f ~ uwJ,k
n u2!. ~B19!

Analogously we obtain, forj52, . . . ,J21,

nj ,1
n115b1nj ,1

n212b2~nj11,1
n uj11,1

n 2nj21,1
n uj21,1

n 12nj ,2
n v j ,2

n !

1b3f ~ uwj ,1
n u2!, ~B20!

nj ,K
n115b1nj ,K

n212b2~nj11,K
n uj11,K

n 2nj21,K
n uj21,K

n

22nj ,K21
n v j ,K21

n !1b3f ~ uwj ,K
n u2!. ~B21!

At the corners we have

n1,1
n115b1n1,1

n212b2~2n2,1
n u2,1

n 12n1,2
n v1,2

n !1b3f ~ uw1,1
n u2!,

~B22!

n1,K
n115b1n1,K

n212b2~2n2,K
n u2,K

n 22n1,K21
n v1,K21

n !

1b3f ~ uw1,K
n u2!, ~B23!

nJ,1
n115b1nJ,1

n212b2~22nJ21,1
n uJ21,1

n 12nJ,2
n vJ,2

n !

1b3f ~ uwJ,1
n u2!, ~B24!

nJ,K
n115b1nJ,K

n212b2~22nJ21,K
n uJ21,K

n 22nJ,K21
n vJ,K21

n !

1b3f ~ uwJ,K
n u2!. ~B25!

The equations for the velocities have been discretized as

t2
uj ,k
n112uj ,k

n21

2Dt
1
1

2
~uj ,k

n111uj ,k
n21!1g

uwj11,k
n u22uwj21,k

n u2

2D

50. ~B26!
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The discretization~B26! yields the explicit scheme

uj ,k
n115c1uj ,k

n212c2~ uwj11,k
n u22uwj21,k

n u2!, ~B27!

for j52, . . . ,J21; k51, . . . ,K with boundary condition
u1,k5uJ,k50 for k51, . . . ,K and

c15
t22Dt

t21Dt
, c25

gDt

~t21Dt !D
. ~B28!

Similarly we obtain, for the second component

t2
v j ,k
n112v j ,k

n21

2Dt
1
1

2
~v j ,k

n111v j ,k
n21!1g

uwj ,k11
n u22uwj ,k21

n u2

2D

50 ~B29!

or, explicitly,

v j ,k
n115c1v j ,k

n212c2~ uwj ,k11
n u22uwj ,k21

n u2! ~B30!

for k52, . . . ,K21; j51, . . . ,J and at the boundary
v j ,15v j ,K50 for j51, . . . ,J.
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